

MARKSCHEME

May 2013

MATHEMATICS DISCRETE MATHEMATICS

Higher Level

Paper 3

11 pages

-2-

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

1.	(a)		g the Euclidean Algorithm,			
			$=3\times99+35$	M1 A1		
	$99 = 2 \times 35 + 29$					
		$35 = 1 \times 29 + 6$ $29 = 4 \times 6 + 5$				
		A1				
		6:	A1 A G			
	hence 332 and 99 have a gcd of 1					
	No	te: Fo m pr				
				1	[4 marks]	
	(b)	(i)	working backwards, $6-5=1$	(M1)		
			$6 - (29 - 4 \times 6) = 1$ or $5 \times 6 - 29 = 1$	<i>A1</i>		
			$5 \times (35 - 29) - 29 = 1$ or $5 \times 35 - 6 \times 29 = 1$	<i>A1</i>		
			$5 \times 35 - 6 \times (99 - 2 \times 35) = 1$ or $17 \times 35 - 6 \times 99 = 1$			
			$17 \times (332 - 3 \times 99) - 6 \times 99 = 1$ or $17 \times 332 - 57 \times 99 = 1$	A1		
			a solution to the Diophantine equation is therefore			
			x = 17, y = 57	(A1)		
			the general solution is	()		
			x = 17 + 99N, $y = 57 + 332N$	A1A1		
		Not	te: If part (a) is wrong it is inappropriate to give <i>FT</i> in (b) as the numbers will contradict, however the <i>M1</i> can be given.			
		(ii)	it follows from previous work that $17 \times 332 = 1 + 99 \times 57$	(M1)		

 $\equiv 1 \pmod{57}$

z = 332 is a solution to the given congruence

the general solution is 332 + 57N so the smallest solution is 47

[11 marks]

(A1)

(A1)

A1

Total [15 marks]

2.	(a)	(i) there is an Eulerian trail because there are only 2 vertices of odd degree there is no Eulerian circuit because not all vertices have even degree R .	
		(ii) eg GBAGFBCFECDE AZ	2 [4 marks]
	(b)	(i) Step Vertices labelled Working values 1	
		minimum weight is 14 Note: Award the final two A1 marks whether or not Dijkstra's Algorithm is used.	ı

[8 marks]

Total [12 marks]

3. the equation can be written as (a) $(3n+3)^2 = n^3 + 3n^2 + 3n + 1$

M1A1

any valid method of solution giving n = 8

(M1)A1

Note: Attempt to change at least one side into an equation in n gains the M1.

[4 marks]

(b) **METHOD 1**

as decimal numbers,

$$(33)_8 = 27, (1331)_8 = 729$$

A1A1

A1

converting to base 7 numbers,

 $27 = (36)_7$

A1 7)729 *M1*

7)104(1

7) 14(6

7) 2(0 7) 0(2

therefore $729 = (2061)_7$ A1

the required equation is

 $36^2 = 2061$ A1

METHOD 2

as a decimal number, $(33)_8 = 27$

converting to base 7,

 $27 = (36)_7$ A1

multiplying base 7 numbers

36

 $\times 36$

1440 *M1 A1*

321 2061 A1

the required equation is

 $36^2 = 2061$ A1

Note: Allow *M1* for showing the method of converting a number to base 7 regardless of what number they convert.

[6 marks]

Total [10 marks]

4. (a) evaluating the adjacency matrix to the fifth power number of walks = 14

(M1) A2

[3 marks]

(b) number of edges in G = 5

A1

number of edges in
$$G' = {5 \choose 2} - 5$$

(M1)

=5

A1

Note: Allow listing of edges in G' or drawing graphs.

[3 marks]

(c) (i) the adjacency matrix of G' is

	В	D	Α	C	Е
В	0	1	0	1	1
D	1	0	0	0	0
Α	0	0	0	1	0
С	1	0	1	0	1
Е	1	0	0	1	0

A4

Note: Award *A3* for one error, *A2* for two errors, *A1* for three errors and *A0* for more than three errors.

(ii) it follows that G and G' are isomorphic because the adjacency matrices of G and G' are identical

R1

Note: Or equivalent comprehensive explanation.

[5 marks]

(d) let H have e edges

M1

number of edges in
$$H' = {6 \choose 2} - e = 15 - e$$

A1

for an isomorphism to exist, these must be equal:

M1

$$e=15-e \Rightarrow e=7.5$$

A1

which is impossible so no isomorphism

AG [4 marks]

Total [15 marks]

5. using Fermat's little theorem,

$$k^p \equiv k \pmod{p}$$
 (M1) therefore,

$$\sum_{k=1}^{p} k^{p} \equiv \sum_{k=1}^{p} k \pmod{p}$$
M1

$$\equiv \frac{p(p+1)}{2} \pmod{p}$$

$$\equiv 0 \pmod{p}$$
 AG

since
$$\frac{(p+1)}{2}$$
 is an integer (so that the right-hand side is a multiple of p) $R1$

[4 marks]

using the alternative form of Fermat's little theorem, (b)

$$k^{p-1} \equiv 1 \pmod{p}, 1 \le k \le p-1$$

$$k^{p-1} \equiv 0 \pmod{p}, \ k = p$$

therefore,

$$\sum_{k=1}^{p} k^{p-1} \equiv \sum_{k=1}^{p-1} 1 \ (+0) \pmod{p}$$
 M1

$$\equiv p - 1 \pmod{p}$$
(so $n = p - 1$)
$$A1$$

Note: Allow first A1 even if qualification on k is not given.

[4 marks]

Total [8 marks]