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1. (a) using the Euclidean Algorithm, 

  332 3 99 35= × +  M1 

  99 2 35 29= × +  A1 

  35 1 29 6= × +  

  29 4 6 5= × +  A1 

  6 1 5 1= × +  A1 

  hence 332 and 99 have a gcd of 1 AG 
 

  
       [4 marks] 

 

 (b) (i) working backwards, (M1) 

   6 5 1− =  

   6 (29 4 6) 1− − × = or 5 6 29 1× − =  A1 

   5 (35 � 29) � 29 1 × =  or 5 35 � 6 29 1× × =  A1 

   5 35 � 6 (99 � 2 35) 1× × × =  or 17 35 � 6 99 1× × =  

   17 (332 � 3 99) � 6 99 1× × × =  or 17 332 � 57 99 1× × =  A1 

   a solution to the Diophantine equation is therefore 

   17, 57x y= =  (A1) 

   the general solution is 

   17 99 , 57 332x N y N= + = +  A1A1 
 

   
 

  (ii) it follows from previous work that 

   17 332 1 99 57× = + ×  (M1) 

     1(mod57)≡  (A1) 

   332z =  is a solution to the given congruence (A1) 

   the general solution is 332 57N+  so the smallest solution is 47 A1 

       [11 marks] 

 

      Total [15 marks] 

 

 

Note: If part (a) is wrong it is inappropriate to give FT in (b) as the 

numbers will contradict, however the M1 can be given. 

Note: For both (a) and (b) accept layout in tabular form, especially the brackets 

method of keeping track of the linear combinations as the method 

proceeds. 
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2. (a) (i) there is an Eulerian trail because there are only 2 vertices of odd degree R1 

   there is no Eulerian circuit because not all vertices have even degree R1 

 

  (ii) eg GBAGFBCFECDE A2 

       [4 marks] 

 

 (b) (i) Step Vertices labelled Working values 

     1 A  A(0), B-3, G-2 M1A1 

     2 A, G  A(0), G(2), B-3, F-8 A1 

     3 A, G, B A(0), G(2), B(3), F-7, C-10 A1 

     4 A, G, B, F A(0), G(2), B(3), F(7), C-9, E-12  

     5 A, G, B, F, C A(0), G(2), B(3), F(7), C(9), E-10, D-15 A1 

     6 A, G, B, F, C, E A(0), G(2), B(3), F(7), C(9), E(10), D-14  

     7 A, G, B, F, C, E, D A(0), G(2), B(3), F(7), C(9), E(10), D(14) A1 
 

   
 

   
 

  (ii) minimum weight path is ABFCED A1 

   minimum weight is 14  A1 

    Note: Award the final two A1 marks whether or not Dijkstra�s Algorithm  

is used. 
 
       [8 marks] 

 

      Total [12 marks] 

 

Note: Award M1A1A1A1A0A0 if final labels are correct but 

intermediate ones are not shown. 

Note: In both (i) and (ii) accept the tabular method including back 

tracking or labels by the vertices on a graph. 
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3. (a) the equation can be written as 

  2 3 2(3 3) 3 3 1n n n n+ = + + +  M1A1 

  any valid method of solution giving 8n =  (M1)A1 
 

  
       [4 marks] 

 

 (b) METHOD 1 

  as decimal numbers, 

  8 8(33) 27, (1331) 729= =  A1A1 

  converting to base 7 numbers, 

   727 (36)=  A1 

   7)729  M1 

   7)104(1 

   7)  14(6 

   7)    2(0 

   7)    0(2 

  therefore 7729 (2061)=  A1 

  the required equation is 

  236 2061=   A1 

 

  METHOD 2 

  as a decimal number, 8(33) 27=  A1 

  converting to base 7, 

   727 (36)=  A1 

  multiplying base 7 numbers 

       36 

    × 36  

   1440  M1 

     321  A1 

   2061  A1 

  the required equation is 

  236 2061=   A1 
 

  
       [6 marks] 

 

      Total [10 marks] 

 

Note: Allow M1 for showing the method of converting a number to base 7 

regardless of what number they convert. 

Note: Attempt to change at least one side into an equation in n  gains the M1. 
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4. (a) evaluating the adjacency matrix to the fifth power (M1) 

  number of walks 14=  A2 

       [3 marks] 

 

 (b) number of edges in 5G =  A1 

  number of edges in 
5

5
2

G
 

′ = − 
 

 (M1) 

  5=    A1 
 

  
       [3 marks] 

 

 (c) (i) the adjacency matrix of G′  is 

 

 B D A C E 

B 0 1 0 1 1 

D 1 0 0 0 0 

A 0 0 0 1 0 

C 1 0 1 0 1 

E 1 0 0 1 0 

     A4 

 

   
 

  (ii) it follows that G and G′ are isomorphic because the adjacency 

matrices of G and G′ are identical R1 
 

Note: Or equivalent comprehensive explanation. 

       [5 marks] 

 

 (d) let H have e edges M1 

  number of edges in 
6

15
2

H e e
 

′ = − = − 
 

 A1 

  for an isomorphism to exist, these must be equal: M1 

  15 7.5e e e= −  =  A1 

  which is impossible so no isomorphism AG 

       [4 marks] 

 

      Total [15 marks] 

 

Note: Award A3 for one error, A2 for two errors, A1 for three errors and A0 

for more than three errors. 

Note: Allow listing of edges in G′  or drawing graphs. 
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5. (a) using Fermat�s little theorem,  

  (mod )pk k p≡  (M1) 

  therefore, 

  
1 1

(mod )
p p

p

k k

k k p
= =

≡   M1 

   
( 1)

(mod )
2

p p
p

+
≡  A1 

   0(mod )p≡  AG 

  since 
( 1)

2

p +
 is an integer (so that the right-hand side is a multiple of p) R1 

       [4 marks] 

 

 (b) using the alternative form of Fermat�s little theorem, 

  1 1(mod ), 1 1pk p k p−
≡ ≤ ≤ −  A1 

  1 0(mod ),pk p k p−
≡ =  A1 

  therefore, 

  
1

1

1 1

1 ( 0)(mod )
p p

p

k k

k p
−

−

= =

≡ +   M1 

  1(mod )p p≡ −  A1 

  (so 1n p= − ) 
 

  
       [4 marks] 

 

      Total [8 marks] 

 

 

 

 

Note: Allow first A1 even if qualification on k is not given. 


